成人午夜免费视频-日韩精品视频一区二区-爱欲av-深夜福利电影-免费污视频在线观看-1024手机在线观看-国精产品一区一区三区免费视频-五月六月丁香-亚洲五码在线-国产在线观看精品-亚洲自拍偷拍区-国产亚洲福利-四色在线-青青草原在线免费-毛片网站在线免费观看-超碰在线人人草-日韩av大片在线观看-av片在线免费看-欧美区视频-免费毛片软件-免费看的黄色小视频-一级网站在线观看-国产jjizz一区二区三区视频-久久一区中文字幕-91精品国产综合久久国产大片

3D打印的深度神經網絡,光速執行AI運算

Date:2018-07-31 08:06:43

大腦中神經元之間的信號傳播速度大約是 100 米每秒,而光的傳播速度是 30 萬千米每秒,如果神經元信號也是光速傳播的呢?來自加州大學洛杉磯分校(UCLA)的研究人員利用 3D 打印技術打印出了固態的神經網絡,并且利用層級傳播的光衍射來執行計算,實現了手寫數字的圖像識別,相關成果已發表在《science》雜志上。


這一想法看似新奇,其實也很自然。神經網絡中執行的是線性運算,恰好和光衍射的線性相互作用對應,神經元的權重、激活值概念也能和光的振幅、相位對應(可調)。此外,固態光衍射計算還具有能耗小、無發熱、光速執行(盡管傳統計算機電路中的電場傳播也是光速的,但并未直接對應神經網絡的計算過程)等優點。該研究方向尚處于起步階段,如果能充分利用其優勢,也許會有很廣闊的應用前景。


如今,機器學習無處不在,但多數機器學習系統是隱形的:它們在「黑箱」里優化音頻或識別圖像中的人臉。但最近 UCLA 的研究人員研發出了一個 3D 打印 AI 分析系統。這一系統不僅看得見,還摸得著。與以往通過調節數字進行分析的系統不同,該系統通過光線的衍射來分析人工智能。這一新奇、獨特的研究成果表明:這些「人工智能」系統可以看起來非常簡單。


我們通常將機器學習系統看作人工智能的一種形式,其核心是對一組數據進行的一系列運算,每一次運算都基于上一次運算或饋送到一個循環中。運算本身并不太復雜——盡管也沒有簡單到可以用紙筆計算的程度。最終,這些簡單的數學運算會得出一個概率,即輸入的數據與系統「學會」識別的各種模式相匹配。


通常,機器學習系統進行每一次參數更新或推斷時所需的運算需要在 CPU 或 GPU 上進行。由于當前的深度學習需要大量并行計算,GPU 成了更廣泛的選擇。但即使最先進的 GPU 也是用硅和銅制成的,信息需要沿著錯綜復雜的電路以脈沖的形式傳播。這就意味著,不論是執行新的計算還是重復的計算,傳統 GPU 都會產生能耗。


因此,當深度學習中的這些「層」已經完成訓練,并且所有參數的值都確定下來,它還會一次次地重復計算與耗能。這意味著 3D 打印 AI 分析系統在訓練完它的「層」后,還可以被優化,不會占用太大空間或 CPU 功率。來自 UCLA 的研究人員表示,它確實可以固化,這些層本身就是由透明材料制成的 3D 打印層,印有復雜的衍射圖案,這些圖案可以對光線進行處理。


如果這樣描述讓你覺得有點頭疼,不妨想想機械計算器。如今,數字計算都是在計算機邏輯中以數字形式完成的。但是過去,計算器需要移動實際的機械零件才能進行計算——數字加到 10 都會造成零件位置變換。從某種程度上來說,這種「衍射深度神經網絡」與之相仿:它使用并操縱數字的物理表示,而不是電子表示。這就代表著,如果將模型的預測過程固化為物理表示,那么它在實際預測過程中就能大大降低能耗。


正如研究人員所說:

給定層上的每個點傳輸或反射入射波,該入射波相當于通過光學衍射連接到下一層其它神經元的人工神經元。通過改變相位和振幅,每個「神經元」都是可調的。

「我們的全光深度學習框架能夠以光速執行各種復雜任務,基于計算機的神經網絡也可以實現這些任務。」研究人員在論文中描述其系統時寫道。


為了證明這一點,他們訓練了一個深度學習模型來識別寫手寫數字。完成之后,他們會把矩陣數學層轉化為一系列的光學變換。例如,一個層可能會通過將兩者的光線重新聚焦到下一層的單個區域來增加值——實際計算比這要復雜得多,此處只做概述。


通過在印刷版上布置數百萬個微型轉換,光從一端輸入并從另一個結構中輸出,因此系統能以超過 90% 的準確率判斷它是否為 1、2 和 3 等。


讀者可能會疑問這到底有什么用,因為最簡單的三層感知機在識別手寫數字時都能輕松達到 95% 以上的準確率,而卷積網絡可以實現 99% 以上的準確率。這一形式目前確實沒什么實際用處,但是神經網絡是非常靈活的工具,系統完全有可能識別字母而不是僅限于數字。因此可以令光學字符識別系統在硬件中運行,且基本上不需要能耗或計算。

真正的局限在于制造工藝:打造一個能實現按需處理任務的超高精度衍射板非常困難。畢竟,如果需要精確到小數點后七位,而印刷版卻只能精確到第三位的話,那就相當麻煩了。


這只是一個概念的證明——對大型數字識別機器并沒有迫切需求——但這個想法十分有趣。該想法可能會對攝像機和機器學習技術產生影響——在物質世界而非虛擬世界里構造光與數據。看起來像是倒退,但也許只是鐘擺在向后擺動。


論文:All-optical machine learning using diffractive deep neural networks(利用衍射深度神經網絡的全光機器學習)

論文地址:http://science.sciencemag.org/content/early/2018/07/25/science.aat8084


摘要:深度學習已經提高了我們使用計算機執行高級推理任務的能力。我們在本文中引入了一種物理機制來執行機器學習,這是一種全光衍射深度神經網絡(D^2NN)架構,可以按照基于深度學習設計的、集體工作的被動衍射層來實現多種函數。我們構建了 3D 打印的 D^2NN 來實現手寫數字和時尚產品的圖像分類,以及成像鏡頭在太赫茲光譜的函數。我們的全光深度學習框架能以光速計算多種基于傳統計算機的神經網絡也可以實現的復雜函數,并將在全光圖像分析、特征檢測和目標分類中開發新的應用,此外它還允許設計新的攝像頭和光學器件,以利用 D^2NN 執行獨特的任務。

圖 1:衍射深度神經網絡(D^2NN)架構。

圖 2:3D 打印的衍射深度神經網絡測試實驗。

圖 3:衍射深度神經網絡實現手寫數字識別。

本文轉載自:中國3D打印網 版權歸原作者所有

主站蜘蛛池模板: 成人播放器 | 欧美视频一区 | 日韩在线视频免费观看 | 中文字幕欧美日韩 | 黄色网炮 | 国产又粗又猛又黄又爽无遮挡 | 亚洲精品一区二区三 | 日韩激情视频 | 在线 | 喷水了…太爽了高h | 亚洲第二页 | 国产精品不卡 | 91在线观看免费高清完整版在线观看 | 人人射 | 日韩精品视频在线 | 无码人妻一区二区三区免费 | 少妇一级淫片免费放 | 国产一级黄色电影 | 国产xxxx| 在线免费看黄 | 久久99视频 | 中文字幕在线视频观看 | 久草视频在线播放 | 欧美在线不卡 | 91嫩草欧美久久久九九九 | jizz国产 | 婷婷色综合 | 91在线精品视频 | 国产精品久久久久久久久久久免费看 | 精品人妻无码一区二区三区换脸 | 综合五月 | 少妇特黄a一区二区三区 | 亚洲色图在线视频 | 五月婷婷在线观看 | 国内精品国产成人国产三级 | 欧美成人精品一区二区 | 亚洲视频中文字幕 | 91免费看 | 超碰人人草 | 91天堂网| 国产又大又粗又长 | 精品免费国产一区二区三区四区 | 不许穿内裤随时挨c调教h苏绵 | 性欧美精品男男 | 欧美日韩国产在线观看 | 毛片传媒| 欧美精品区 | 中文字幕在线观看网站 | 中文字幕人妻一区二区三区 | 亚洲激情av | 91一区二区三区 | 韩日一级片 | 日本一道本 | 久在线| 亚洲国产精品一区 | 无码人妻熟妇av又粗又大 | 国产成人一区 | 一区视频| 成人三区 | 国产精品蜜 | 综合另类| 色姑娘综合网 | 精品麻豆 | 精品人妻一区二区三区鲁大师 | 麻豆一区二区 | 国产激情av | 成人av免费| www.国产精品 | 亚洲九九 | 四虎影院最新网址 | 国产传媒一区二区三区 | 亚洲爆乳无码一区二区三区 | 修仙淫交(高h)h文 | 国产白丝精品91爽爽久久 | 午夜精品久久久久久久99老熟妇 | 国产精品美女视频 | 麻豆三级 | 无码人妻精品一区二区三 | 日本女人毛茸茸 | 日韩黄色片 | 精品美女| 搡老岳熟女国产熟妇 | 青青在线视频 | 国精产品一区一区三区有限公司杨 | 国产一区二区三区在线 | 91成人看片| 成人午夜视频在线观看 | 交换配乱淫东北大坑性事视频 | 亚洲激情综合网 | 麻豆网址 | 在线免费观看视频 | 精品人妻一区二区三区鲁大师 | 99热国产精品 | 久久国产精品视频 | 丰满老妇bbwbbwbbw | 欧洲影院 | 91在线视频观看 | 91麻豆精品 | 国产免费一区二区 |